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ABSTRACT 

Experiments and simulations were conducted to assess the use of lithium gadolinium-

borate (LGB) crystals to identify neutron capture in a detector system intended to detect 

nuclear reactor antineutrinos.  The experiments used two prototype detectors comprised 

of crushed LGB crystal mixed with plastic scintillator.  Both detectors were 127 mm 

diameter cylinders, with heights of 123 mm and 348 mm.  Each contained 1% by weight 

LGB crystal, but different LGB particle sizes.  The experiments determined neutron 

capture efficiencies, interevent timing and scintillation light attenuation of the prototype 

detectors.  Based only on the 6Li(n,α)3H interaction, neutron capture efficiencies of 

1.73% ±  0.24% for the smaller detector and 1.38% ±  0.14% for the larger detector were 

measured for a 252Cf fission neutron source.  Indications of neutron captures on 10B were 

also evident, but accurate efficiency measurements were hampered by contamination 

from non-neutron capture events.  Computer simulations using the GEANT4 toolkit were 

conducted to analyze detector performance.  Comparisons between experiment and 

simulations were made to validate the detector modeling. Simulations of detector 

performance at inverse beta decay neutron energies were conducted to determine neutron 

detection efficiency in an antineutrino detection role.  Variation of isotope content, LGB 

loading and LGB particle size were modeled to explore possible improvements in neutron 

capture efficiency at neutron energies associated with inverse beta decay.   
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I. INTRODUCTION 

A. OVERVIEW 

The detection of antineutrinos from nuclear reactors represents a very difficult 

challenge that has been under active investigation for many decades.  In particular, 

overcoming the effects of background radiation (primarily of cosmic ray origin) has 

required detectors to be placed under significant overhead shielding.  Monitoring nuclear 

reactor power has been demonstrated using detectors placed below ground.  For practical 

purposes, however, it is desirable to have an antineutrino detector capable of operating 

above ground.  To operate in a significantly higher background environment, a detector 

must incorporate a means of rejecting much of the increased background.  Previous 

reactor monitoring detectors did not have specific knowledge of the type of particles 

causing interactions and instead relied primarily on timing information between 

interactions.  When an antineutrino interacts with a proton via the inverse beta decay 

process a positron and a neutron are produced.  Knowing whether an interaction in a 

detector was caused by either a positron or a neutron would allow for significant 

reduction in background.  This thesis focuses on characterizing a detector material 

capable of identifying neutron capture. 

This thesis presents the results of experimental and simulation efforts taken to 

determine the neutron detection efficiency in an antineutrino detection role and the 

optical characteristics that indicate whether the material could be scaled to a larger size.  

This thesis includes:  

• An overview of antineutrino physics and detection 

• Description of the characteristics of LGB/plastic material 

• Description of experiments on two prototype detectors to determine 

• Scintillation light attenuation length  

• Neutron capture identification capability and fast neutron capture 
efficiency 

• Neutron lifetime and interevent timing for fast neutrons 



 2

• Results of Monte Carlo simulations of LGB/plastic detector that indicate 
the potential antineutrino detection capability  

• Simulations of various parameter adjustments that indicate potential 
neutron capture efficiency improvements 

B. ANTINEUTRINOS 

In studying the recently discovered beta decay of unstable elements in the early 

1930s, scientists quickly determined that the long held belief in the conservation of 

energy was being challenged.  Unlike alpha particles, which have well defined energies 

when emitted in a decay process, beta particles (electrons or positrons) are emitted with a 

continuous distribution of energies. The first models of the beta decay process were [1]:  

  
( )
( )
( )

 

n  p e  negative beta decay,         

p  n e positive beta decay,  .   

p  e   n orbital electron capture,   
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β
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− −
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If energy were conserved, in what appeared to be a two body process, the 

products of the process must have the same kinetic energy in every decay.  The solution 

to the problem came in 1931 when Wolfgang Pauli proposed the existence of a third 

product of beta decay, the neutrino.  Since the particle had not been previously identified, 

it was hypothesized that it would have neutral electric charge and would be either 

massless or of extremely low mass.  Pauli was concerned that he was postulating a 

particle that may be undetectable and sought assurance from other scientists working on 

radioactivity at the time [2].  The beta decay processes proposed by Pauli were [1]: 
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As weak force interaction theory matured, physicists began to envision methods 

to detect the neutrino.  In the 1950s, Frederick Reines and Clyde Cowen built the first 

antineutrino detector.  Using a large volume of liquid scintillator doped with cadmium 
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chloride, they were able to detect the antineutrino signature of a nuclear reactor by 

detecting the products of inverse beta decay [3].  Since then, neutrino detection and 

neutrino physics has played an important role in role in the advancement of fundamental 

particle physics, development of the standard model of particle physics and our 

understanding many cosmological processes.  Experiments conducted since the 1960s 

have led to the discovery of neutrino “flavor” oscillation and the experimental 

verification that neutrinos do indeed have mass, although only upper bounds on the mass 

have been established.   

Neutrinos in the standard model are leptons and antineutrinos are anti-leptons.  

Neutrinos are given the symbol ν  and antineutrinos, ν . Like their lepton cousins, they 

also come in three “flavors”, electron ( eν ), muon ( μν ), and tauon ( τν ) neutrinos and each 

has its own anti-particle.  From this point forward, this discussion is focused solely on 

electron neutrinos; hence, the subscript is dropped and it is assumed that the particle is of 

the electron flavor unless stated otherwise.   

It is not a settled matter as to whether neutrinos and antineutrinos are 

fundamentally different particles, or if neutrinos are their own anti-particle, the difference 

between the two being the helicity (the sign of the spin vector relative to the momentum 

vector).  Neutrinos with mass have two allowed helicities.  Since a particle with mass 

cannot have a velocity equal to the speed of light, it is possible to be in a reference frame 

in which the neutrino is moving in the opposite direction, and therefore, has the opposite 

helicity.  Experimentally, neither the neutrino nor the antineutrino has ever been detected 

with opposite helicity, and the two are taken to be separate particles in reactor 

monitoring.  In nuclear reactors, the neutrino product from negative beta decay is the eν , 

which interacts protons via inverse beta decay.  When discussed broadly, neutrinos and 

antineutrinos are often referred to as simply neutrinos. 

Neutrino production has been found in all manner of galactic, solar and terrestrial 

sources.  Neutrino production through electron capture as the iron core of a star photo-

dissociates is an important physical process in the supernova process.  Most of the energy 

in a supernova, approximately 99%, is actually carried away by neutrinos of all flavors 
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generated through several mechanisms in the hot interior [4].  Neutrinos from the sun are 

generated through several reactions; the most easily detectable source being the ppIII 

branch of He production.  This branch produces neutrinos through the reaction, 
8 8 + B  Be + e +  + ν γ→ , and is the most significant source of high energy neutrinos in 

the sun [4].  Terrestrially, neutrinos are created in the cascade of particles produced in 

cosmic ray interactions in the atmosphere.  Antineutrinos are being produced through 

decay of naturally radioactive elements in the earth.  238U and 232Th beta decay are the 

major contributors to geologically produced neutrinos [4].   

Neutrinos have been experimentally detected only through weak force 

interactions.  Theoretically, the neutrino also interacts gravitationally through its small 

mass, and possibly electromagnetically through a very small spin magnetic moment.  The 

three weak force interaction processes that have had substantial success in neutrino 

detection experiments are inverse beta decay, nucleus scattering and electron scattering.  

The inverse beta decay processes for neutrinos and antineutrinos are [1]:   

 
   n  p  e

 p  n  e
ν

ν

−

+

+ → +

+ → +
. 

 

Inverse beta decay is termed a “charged current” method of detection due to the 

exchange of electrical charge between the leptons and hadrons.  Neutrinos can also 

interact with a nucleus or an electron through elastic scattering in a “neutral current” 

interaction.   

Although there are numerous interaction mechanisms possible, the probability of 

the interaction occurring is extraordinarily small.  One conceptual way of characterizing 

the weakness of the antineutrino interaction with matter is to realize that the mean free 

path of neutrinos traveling through lead in lead is 16 1.5x10 m∼ , a distance greater than a 

light year [5].  The reaction cross section1 for most neutrino interactions is less than 10-41 

cm2 for neutrinos with energy less than 50 MeV.  The cross section for antineutrino 
                                                 

1 The reaction cross section is a measure of the probability of an interaction between two particles.  It 
is quantified physically as a “characteristic area” and has units of barns or cm2, where 1 barn  = 10-24 cm2.  
The reaction cross section is typically dependent on particle energy. 
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inverse beta decay, inv βσ  is measure of the probability of the interaction.  Equation 1 

shows how the rate of interaction per second per volume, inv r β , can be determined from 

the cross section, number density of target protons, pN , and the flux of incident 

antineutrinos, νΦ . 

   
 inv inv pr Nβ β νσ= Φ  (1) 
 

Numerous methods of neutrino detection have been explored over the past half-

century.  In general, most neutrino experiments have been motivated by the pursuit of 

fundamental physics.  In the past decade, however, neutrino detection has matured 

sufficiently to enable it to be used in applications with more tangible utility.  By 

exploiting the same detection mechanism invented by Reines and Cowen, it is now 

practical to measure the antineutrino flux of a nuclear reactor with instruments that are far 

less elaborate and more robust than those used in the early experiments. 

C. ANTINEUTRINO DETECTION FOR NUCLEAR SAFEGUARDS 

The diversion of low enriched uranium nuclear fuel for nuclear weapons purposes 

is a major threat to world and regional stability.  Countries with active nuclear power 

programs and nuclear research reactors that do not fully account for the status of their 

nuclear material are a source of great concern internationally.  The International Atomic 

Energy Agency (IAEA) was established in the 1957 with the purpose of promoting the 

peaceful use of atomic energy.  In this role, the IAEA has developed a strategy of 

accountancy that seeks to provide credible assurance of a state’s peaceful use of nuclear 

technology.  The nuclear safeguards regime is an array of technical and bureaucratic 

methods of tracking nuclear materials to detect and deter diversion for weapons related 

purposes.  Originally, participation in the nuclear safeguards program was voluntary, but 

became a requirement for signatories of the Nuclear Non-Proliferation Treaty [6].   

Presently, there are methods of determining whether nuclear fuel is being 

diverted.  There are, however, limitations to the current system that an antineutrino 

detector inherently overcomes.  In the current safeguards regime, the focus at the 
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commercial reactor stage is fuel assembly inventory accountancy, reactor operator 

declarations of power and burnup and auditing by the IAEA.  Current methods of 

tracking fissile inventory are time consuming, expensive, and slow to produce 

conclusions.  The system also uses containment and surveillance techniques, such as tags, 

seals, and tamper proof video cameras, but no direct measurement of the fission process 

[7].   

In smaller research reactors, the agency also attempts to track the reactor power.  

Current power-monitoring technology is complex and involves installing devices that 

measure coolant temperature and flow rate at critical points in the reactor cooling system.  

The devices give inspectors only an indirect indication of reactor power.  They are also 

instrusive and susceptible to spoofing and other forms of error.   

Antineutrino flux measurements would allow for a direct measurement of the 

nuclear fuel cycle and tracking of fissile inventory in the core.  Such a measurement 

could not be spoofed and would not rely on plant operator declarations.  It also has the 

potential to be simpler, and cheaper to implement.  An antineutrino reactor monitor can 

be operated for extended periods without inspectors on-site and the measurements 

downloaded remotely.  This capability would be useful in a nuclear safeguards regime 

and the IAEA has expressed interest in pursuing this technology.   

Antineutrino detection for safeguards purposes has been demonstrated and is 

currently being developed to increase sensitivity and deployability and reduce 

intrusiveness.  Ideally, an antineutrino reactor monitor could be packaged in a standard 

shipping container and placed outside the reactor assembly, with little impact to reactor 

operations.  Current designs have been placed inside the containment structure to provide 

several tens of meters of water equivalent (m.w.e) of overhead shielding.  Although they 

do not impact operations once in place, they require operator involvement to install and 

rely on a structural design element of pressurized light water reactors (PLWRs) that is not 

present in all reactor designs. 
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II. REACTOR ANTINEUTRINO DETECTION 

A. ANTINEUTRINO PRODUCTION IN NUCLEAR REACTORS 

In a PLWR, such as those typically used in the United States, the fissile material 

consumed in the reactor consists primarily of 235U and 239Pu and over the standard 500-

600 day fuel cycle, the ratio of 235U fissions to 239Pu fissions changes.  Because of 

differences in fission product yields, the fission of 235U produces a greater quantity of 

detectable antineutrinos per fission than does 239Pu fission (i.e., 1.92 versus 1.45 average 

detectable antineutrinos per fission, respectively).   

The detection methods considered in this thesis would detect antineutrinos only 

from inverse beta decay interactions.  The inverse beta decay reaction requires 

antineutrinos with energies above 1.81 MeV as the difference in rest mass between the 

proton and the heavier neutron must be imparted by the kinetic energy of the neutrino.  In 

a typical reactor, only 3% of the antineutrinos produced are of energies above the 1.81 

MeV threshold.  The production rate of detectable antineutrinos for a typical 3 GWthermal 

reactor is 21~ 10  /sν .  An antineutrino detector would likely be placed at a distance of 25-

50 m from the reactor core.  At that distance, the 1/r2 falloff in flux would result in an 

antineutrino flux 16 17 -2 -1~ 10 - 10  m sν .  For the low energy neutrinos from a nuclear 

reactor the cross section for inverse beta decay on a proton is 43~ 10− cm2.  A cubic meter 

sized antineutrino detector made of polyvinyl toluene has approximately 4.6x1029 

protons.  From Equation 1, such a detector would produce a number of detectable inverse 

beta decay reactions 3~ 10  interactions per day.  Therefore, depending on the efficiency 

of the detector, one could expect to detect at most a few thousand interactions per day.  

Even with such a low interaction rate (∼ 1 detection per minute), this is enough to allow 

useful measurements of reactor power and fissile inventory tracking.   

B. ANTINEUTRINO DETECTION 

Antineutrinos are detected only by identifying the products of their interaction 

with ordinary matter.  In an inverse beta-decay interaction, an incident antineutrino 
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interacts via the weak force with a proton to produce a neutron and a positron.  Therefore, 

organic scintillator detectors, which have large hydrogen densities, and hence, targets for 

antineutrino inverse beta reactions, are ideal for reactor antineutrino detection.  The 

positron rapidly deposits its kinetic energy through ionization of atoms in the detector 

and then annihilates with an electron producing the characteristic back to back 511 keV 

gamma rays, which may add to the energy deposit or escape.  The positron interactions 

all occur within ∼ 1 ns and are referred to as the “prompt” energy deposit.   

The resulting neutron from the antineutrino interaction has kinetic energy in the 

tens of keV range.  The neutron loses energy through elastic collisions (i.e., 

“thermalizes”) and is eventually captured on a nucleus.  Depending on the detector 

material and the neutron capture agent, this process can take from one to hundreds of 

microseconds.  Depending upon the capture nucleus, gamma-rays, conversion electrons, 

alpha particles, and/or tritons may be emitted following capture. With careful design, 

these secondary particles can create detectable signals in the scintillator.  The neutron 

capture energy observed in the detector is referred to as the “delayed” energy deposit.  

Taken together, the two signals, prompt and delayed, make a “correlated event.”  In 

previous reactor monitoring experiments, the identity of each particle (that is, neutron or 

positron) was not uniquely known.  Any pair of high amplitude pulses in a scintillator 

detector, occurring within a few tens of microseconds of one another, could pass as an 

antineutrino detection.  In the present advanced detector concept, the performance of 

detection may be improved by the ability to identify and distinguish between the signals 

of these two correlated events by explicitly identifying neutron captures on 6Li and 10B. 

C. EFFECT OF BACKGROUND RADIATION 

Two categories of background radiation can produce signals in an antineutrino 

detector, which mimic the signature of an inverse beta decay interaction.  Time 

uncorrelated background signals occur as a consequence of the Poisson distribution of 

the time between interactions of background radiation. Time correlated background 

events consist of fast neutron and multiple neutron captures produced via cosmic ray 

muon interactions (e.g., spallation) in surrounding material.  With very low detection 
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rates, antineutrino detectors are highly susceptible to background interference.  As such, 

most neutrino detection experiments take place in well shielded environments.  Solar 

neutrino experiments are often a thousand meters or more underground and reactor 

experiments are typically shielded through several meters of concrete and earth.  

Although an antineutrino detector placed at ground level may incorporate a modest shield 

that could greatly reduce gamma ray rates, it would be exposed to a significantly greater 

background of neutrons produced through muonic and hadronic components of cosmic 

rays than previous reactor experiments. 

1. Time Uncorrelated Background 

For a Poisson process, the probability that the time between events lies within a 

given time differential falls off exponentially with a decay constant of 1/event rate.  In a 

detector sensitive to gammas, neutron induced proton recoils and neutron capture; all 

contribute to the total event rate.  If all interactions that occur within less than the neutron 

lifetime have the potential to be inverse beta decay interactions, the background rate 

would add significantly to the measured rate.  Many of the background pulses can be 

eliminated through energy selection.  To extract the number of interactions that were due 

to antineutrinos, a histogram of interevent times is fit by the sum of two exponentials—

one with time constant equal to the measured neutron capture time of the detector, the 

other equal to the inverse of the detector trigger rate.  Subtracting the background 

exponential from the neutron capture exponential gives the number of detected 

antineutrinos.  Figure 1 shows an interevent histogram for a reactor antineutrino detector 

at the San Onofre Generating Station (SONGS).  The fast decay time constant 

exponential due to neutron capture is clearly evident on top of the background.  High 

background rates present a problem for this method of determining antineutrino 

interaction rates.  For a neutron lifetime on the order of 30 sμ  a time uncorrelated 

background rate of over 104 events per second would begin to match the time constant of 

the neutron capture.  Such high rates would make using the method of antineutrino 

detection unfeasible.  
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Figure 1.   Example histogram of interevent time from the SONGS1 nuclear reactor 
antineutrino detector. (From: [8]) 

2. Time Correlated Background 

Fast neutrons entering a detector produce a prompt signal through elastic 

scattering on protons, and if they stop within the detector, can then produce a delayed 

signal through neutron capture.  The time between the scattering signal and the capture 

signal will have a very similar time constant to that of the lower energy neutron capture 

from an antineutrino interaction.  Double neutron capture occurs when two neutrons from 

a muonic event enter the detector and are captured.  The capture lifetime for the two 

neutrons will be the same as for inverse beta-decay neutrons and therefore have a similar 

characteristic time between the two captures.  
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3.  Overcoming Background Through Particle Identification 

In an ideal antineutrino detector, both the positron annihilation and the neutron 

capture events would be uniquely identified and the time between the signals of both 

would be within the characteristic neutron capture time.  Such an ideal detector does not 

currently exist.  Work is being carried out on various antineutrino detector designs to 

allow discrimination of fast neutrons, neutron capture and positron signals.  The detector 

design under investigation in this thesis has the capability to identify the neutron capture 

signal and thereby greatly reduce the impact of uncorrelated background.  Such a design 

is still susceptible to a fast neutron background but could eliminate false antineutrino 

signals due to multiple neutron captures, in which the prompt signal, as well as the 

delayed signal, is a neutron capture.  

D. PREVIOUS REACTOR MONITORING ANTINEUTRINO 
EXPERIMENTS 

1. U.S. Efforts 

A collaboration between Lawrence Livermore National Laboratory and Sandia 

National Laboratories has completed significant work in demonstrating the viability of 

antineutrino detectors in a nuclear safeguards context [8].  The first deployed prototype 

antineutrino detector used a 0.64 ton tank of liquid scintillator with 0.1% Gd loading.  

The detection mechanism here is essentially the same as that used by Reines and Cowan 

with Gd used in place of Cd as the neutron capture agent.  Neutron capture on Gd 

primarily produces several gamma rays with total energy ≈8 MeV.   

Installed at the San Onofre Nuclear Generating Station (SONGS) and operating 

from 2003 through 2008, the detector was designated SONGS1.  SONGS1 showed great 

promise as a reactor power monitor.  It was able to detect changes in reactor status (on 

versus off) in five hours with greater than 99% confidence and can directly measure 

power levels over month long time scales with an estimated 8.3% precision using a daily 

background-subtracted number of detected antineutrinos, or 3% using a weekly number, 

limited almost entirely by statistics [8].  
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The SONGS1 detector has several issues, which would limit its use as a 

deployable antineutrino detector.  The detector is large and heavy, measuring three 

meters per side and weighing 25 tons, including a 20-ton water shield.  Second, the liquid 

scintillator is flammable, toxic, and carcinogenic, and thus, the unit must be transported 

as hazardous material. Deploying this type of detector worldwide would thus be difficult.  

Two additional prototypes, were designed as more deployable detectors with less 

hazardous materials, to address these concerns, but still require significant overhead 

shielding as part of their design.   

The first [9] used a plastic scintillator instead of liquid. The design employs 

gadolinium mixed into a paint and applied in a 1 mm thick layer onto plastic sheets of 2 

cm thickness.  Twenty-four such sheets were assembled into a ∼ 0.5 m3 detector.  In this 

design, an incoming antineutrino triggers an inverse beta decay through interaction with a 

proton in the plastic scintillator. The resulting positron creates the first flash of light, 

while the neutron travels randomly through the plastic until it is captured by a gadolinium 

nucleus in the paint. As in the liquid detector, the neutron–Gd reaction produces the 

shower of gamma rays, which easily escape the thin layer of paint to create a second flash 

of light in the plastic scintillator. To date, this detector has been able to detect on/off 

power state changes.  

The second deployable design [10] uses water mixed with gadolinium and 

measures Cerenkov light. Cerenkov light is produced as charged particles move faster 

than the speed of light within the water. In this system, an antineutrino interacts with a 

proton, creating a positron and neutron via the inverse beta decay process. The first flash 

of Cerenkov light appears as the positron moves through the water.  The neutron created 

during the inverse beta interaction is captured by a gadolinium nucleus, producing 

multiple gamma rays.  These gamma rays in turn generate fast Compton-scattered 

electrons,2 which generate a second flash of Cerenkov light.  This design has only been 

                                                 
2 Compton scattering is process by which a photon scatters from a nearly free atomic electron, 

resulting in a less energetic photon and a scattered electron carrying the kinetic energy lost by the photon.  
The probability of a given scattering angle can be found from the Klein-Nishina formula.  Conservation of 
linear momentum and total energy allows the photon to lose energy of 0 (forward scattered, no interaction) 
to Eγ-0.255 MeV depending on scattering angle. [1:200] 
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studied without a proper shield applied and has not produced clear reactor result.  It has, 

however, clearly demonstrated detection of neutron capture at a level that should provide 

usable antineutrino results with a shield applied.   

2. International Efforts 

There are also efforts ongoing in Russia, France, Brazil and Japan [11] to develop 

reliable antineutrino detectors suitable for safeguards purposes.  In Russia, one of the 

groups that first established the correlation between reactor antineutrino flux, thermal 

power, and fuel burnup has proposed a cubic meter sized Gd loaded scintillator with 

linear alkylbenzene solvent for reactor monitoring. The Double Chooz experiment in 

France will use one of two state-of-the-art antineutrino detectors to determine the 

antineutrino flux of a PWR with great precision providing a benchmark for future use of 

antineutrino detectors for safeguards.  The Nucifer experiment in France is a compact 

antineutrino detector liquid scintillator design, which should be able to measure the 

reactor fuel evolution through the antineutrino energy spectrum.  An experiment in Japan 

is the only one to date that has attempted to observe the antineutrino emission of a 

research reactor.  

E. LGB AS AN ALTERNATIVE ANTINEUTRINO DETECTOR MATERIAL 

The identification (as opposed to simply detection) of one or more of the products 

of inverse beta decay could greatly enhance the background rejection of an antineutrino 

detector.  One method of identifying a neutron capture versus, e.g., a gamma interaction, 

is to introduce a different mechanism for scintillation that will create a distinguishable 

signature.   

A cerium doped, lithium-gadolinium-borate crystal, in the combination 
6Li6

natGd10B3O9:Ce3+ turns out to be a bright inorganic scintillator.  The scintillation light 

from a neutron capture on the Li or B is on the order of ten thousand visible photons per 

MeV of deposited energy.  6Li and 10B are both high capture cross section isotopes, 

which emit an alpha, and/or triton following the capture, allowing this material to create a 

clear, localized signal from a neutron capture even in a small bead of scintillator material.  
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The company MSI/Photogenics has developed an inhomogeneous detection 

medium consisting of small shards (∼ 1 mm3) of LGB scintillator mixed into an ordinary 

plastic scintillator, where the LGB is present at the level of ∼  1% by weight.  This matrix 

of plastic and LGB is a good candidate for the neutron detection agent in an antineutrino 

detector.  The bulk plastic scintillator provides a proton-rich material for inverse beta 

decay, a low Z material in which neutrons can rapidly thermalize, and a bulk scintillator 

material in which the slowing and annihilation of a positron can be observed.  The 

positron deposits its energy in the plastic within 1 ns and produces a pulse, which has a 

very fast decay time (∼ 10 ns).  Meanwhile, the neutron loses energy through elastic 

collisions for tens of microseconds in the plastic until it is captured on the LGB 

scintillator (though some fraction is also captured on hydrogen in the plastic scintillator 

material).  When captured on Li or B, the pulse from the inorganic LGB crystal produces 

an identifiable long decay pulse (∼ 100 ns).  The substantial difference in decay times 

between a scintillation pulse from the plastic versus that of the LGB crystal allows for 

identification of a neutron capture event through standard pulse shape discrimination 

methods.  

1. Studies of LGB As a Neutron Detector 

LGB crystals have been studied for use in thermal neutron detection [12–13] and 

fast neutron spectroscopy [14–15].  Engels et al. and Czirr and McKnight both studied 

LGB for use in neutron detectors at spallation neutron sources.  Engels et al. studied a 

formulation of powdered 6Li6
158Gd11B3O9:Ce3+, Schott glass and epoxy and found that 

the Li capture had an electron equivalent energy of 2.5 MeV.  The Czirr and McKnight 

study was an early examination of using LGB in a powder diffractometer pixel. The 

Menaa neutron spectroscopy study found that a 50.8 mm diameter by 50.8 mm tall 

cylinder of plastic scintillator with 40 g of 6Li6
natGd11B3O9:Ce3+  in ∼ 1 mm shards had a 

Li neutron capture efficiency of ∼ 0.3% with a 252Cf  source.  The Flaska study used a 

127 mm diameter, 101.6 mm tall cylinder of plastic scintillator with 10% by weight 
6Li6

natGd10B3O9:Ce3+ in ∼ 1.2 mm shards.  The study was a proof of concept for pulse 

shape discrimination and validation of a MCNP-PoliMi Monte Carlo simulation.   
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Although the LGB plays the same role as a neutron capture agent allowing 

particle identification, the requirements for making an ideal detector for antineutrinos 

differ in several key ways.  First, an antineutrino detector must be capable of identifying 

the signal of the positron annihilation with a reasonable energy resolution.  Unlike a fast 

neutron spectrometer, an antineutrino detector does not need to know the energy of the 

neutron.  Therefore, high energy resolution is not a critical concern but is still useful for 

determining the energy of the positron interaction.  Spectrometers and thermal neutron 

detectors typically only need a sample of the total flux to determine the energy of the 

neutrons or to determine the interaction rate.  Since reactor antineutrino detectors are 

looking for event rates less than one Hertz, identifying as many neutrons as possible is of 

critical importance.  An antineutrino detector must be designed around the fact that it will 

experience a much higher rate of background events than antineutrino events. 

2. Detector Description 

In this project, experiments were conducted with two prototype LGB/plastic 

scintillator detectors.  The first prototype, Detector 1, is a 127 mm diameter, 123 mm tall 

cylinder.  Detector 2 is 127 mm diameter and 348 mm tall.  The detectors are coated in a 

white diffuse reflective paint and then covered with a thin aluminum foil wrapping.  The 

flat faces of the detector are uncovered for photomultiplier tube (PMT) readout.  The 

detector material is stable and non-hazardous, which is advantageous for deployment into 

a highly regulated nuclear reactor environment, as well as for laboratory 

experimentation/characterization activities.  Both detectors incorporate 1% by weight 

LGB.  The LGB is in the form of shards that are of irregular shape.  Sample shards for 

Detector 2, of typical dimensions ∼ 1 mm–3 mm, are shown in Figure 3.  The shards in 

Detector 1 are similar in shape but have dimensions ∼ 0.2 mm–1 mm.  Based on visual 

inspection, the shards appear to be fairly evenly distributed in Detector 1, but there are 

clearly areas that have a higher or lower density of LGB.  In Detector 2, there is a 

significant variation in the shard density between the two sides of the detector.  The 

difference is difficult to quantify, but at one face of the detector, there appears to be 

almost no LGB particles within the first inch or two, whereas at the other face, there are 

at least 100 shards within the first two inches. 
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Figure 2.   Scintillator material from 
Detector 1.  The speckled 
appearance is due to the 
shards of LGB crystal. 

Figure 3.   Close up of the example 
LGB shards of similar size 
to those in Detector 2 

 

3. Neutron Capture Characteristics 

The relevant capture reactions for H, Li, B and Gd are shown below [16]:   
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Capture on Lithium or Boron will result in charged ions that will quickly deposit 

their kinetic energy and result in the long pulse decay characteristic of LGB, and 

therefore, should be readily identifiable through pulse shape discrimination. 

Neutron capture on Gd releases 8 MeV of energy that is almost entirely carried 

away by gamma rays.  Some of the gamma rays may interact with the detector, but unless 
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the detector is large and has good energy resolution, the 8 MeV signal is either not seen, 

greatly reduced and/or indistinguishable from a background gamma ray.  In experiments 

with the small prototype LGB detector, there was no attempt to determine captures on 

gadolinium, though in a full size antineutrino detector detection of neutron capture via the 

gamma products may be feasible.  

The primary factor that will determine the suitability of an LGB/plastic detector 

for use in antineutrino detection is the fraction of neutrons that capture on each isotope 

present in the medium.  With a large detector (∼ 1 m3) the number of neutrons that escape 

before detection would be approximately 10% for 1% LGB loading.  The more important 

factor is determining the ratio of capture between identifiable neutron captures on 6Li or 
10B and non-identifiable captures on Gd and H.   

For in an anti-neutrino detector, the selection of neutron capture agents requires a 

balance between capture efficiency, ease of identification, neutron capture times and cost.  

Figure 4 shows the neutron capture cross sections as a function of neutron energy for 

each relevant isotope.  Neutrons from inverse beta decay have energy in the range of 1–

100 keV, but quickly loose energy in elastic collisions in the plastic scintillator and take 

on a Maxwellian distribution with a most probable energy of ∼ 0.02 eV.  Capture 

efficiency is the most important characteristic.  Ease of identification is also a factor since 

the detector must operate in real-time.  Discriminating a neutron capture pulse from a 

gamma capture pulse cannot require extensive waveform analysis as the detector needs to 

operate remotely and with standard commercially available computer resources.  Neutron 

capture time is important because the longer the capture time the more sensitive the 

detector becomes to the background rate.  
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Figure 4.   Relative neutron capture cross sections for neutron capture agents in the 
prototype LGB/plastic detector with 1% by weight LGB.   

6Li captures are the easiest to identify.  The reaction has a relatively high energy 

(4.8 MeV), the reaction ion products are light and so exhibit relatively little scintillator 

quenching,3 and the neutron capture reaction has only one final state.  However, the cross 

section for 6Li capture is about one-quarter that for 10B throughout the relevant neutron 

energy spectrum.  Given that there are twice as many Li atoms as there are B atoms in the 

LGB formulation used, we can expect that the ratio of Li captures to B captures of 

approximately two.   

10B capture energy is lower (2.8 MeV) and its ion products are heavier, resulting 

in higher quenching.  10B capture also results in a 0.48 MeV gamma in 93% of the 

reactions.  In the small prototype detector, the 0.48 MeV gamma rarely deposits a 

significant amount of its energy.   

                                                 
3 Quenching in a scintillation detector is the result of various de-excitation mechanisms, which do not 

involve light emission and generally only produce heat [16].  Quenching is material dependent, but is 
typically proportional to the energy deposited per unit distance dE/dx.  The heavier the particle the higher 
the dE/dx and the greater the quenching.  Scintillators that detect several types of particles display the 
energy axis in units of MeV electron equivalent ( MeVee).  Where the light produced by by a 1MeV 
electron is 1 MeVee by definition, but a heavy charged particle would have a kinetic energy of several 
MeV to be 1 MeVee. 
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155Gd and 157Gd have very high capture cross sections at thermal neutron energies, 

but fall off quickly relative to Li and B at higher energies.  The Gd capture resonances 

shown in Figure 4 do not contribute significantly to the overall Gd capture fraction.  The 

neutron thermalizes through discrete energy losses during elastic scattering and there is a 

low probability that a neutron will be at the resonance energy and in LGB 

simultaneously. The Gd capture energy is carried away almost entirely by a multiplicity 

of gamma rays.  Gd reactions may be detectable in a large LGB-based detector through 

their gamma-ray signature, but not uniquely as neutron captures.  In the small prototype, 

the gammas will almost certainly all escape without depositing much energy.  The 

expected ratio for Gd captures to Li or B is hard to calculate as it depends strongly on the 

neutron energy.  Elimination of Gd capture through use of Gd depleted of 155Gd and 
157Gd should add significantly to the capture ratio of Li and B.  However, the cost of 
depGd would likely be prohibitive. 

Capture on hydrogen is another complicating factor. Although it has a relatively 

low cross section compared to the other elements, it is far more abundant.  Determining 

the ratio of H captures is complex and depends greatly on the distribution and loading of 

LGB.  Since H capture produces a single 2.2 MeV gamma, the only indication of capture 

is a short pulse characteristic of gamma interactions in the plastic scintillator, which is 

indistinguishable from background.   

4. Scintillation and Optical Properties 

The energy released in the crystal lattice by a neutron capture is transferred to the 

Ce3+ ions.  The Ce3+ emission bands are centered on 390 nm, which is suitable for 

detection in most photomultiplier tubes (PMT).  The efficient energy transfer to Ce3+ is 

aided by the one-dimensional chains formed by Gd3+ in LGB.  Additionally the longer 

wavelength emission from Ce3+ versus Gd3+ makes LGB nearly transparent to its own 

light [17].  The scintillation occurs with a primary decay constant of 200 ns and a 

secondary, lower amplitude decay constant of 700 ns.  LGB crystals have an index of 

refraction of ≈1.66 in the blue-UV region, which is a close match to most plastic 

scintillators (≈1.58) [18].  
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III. EXPERIMENTS AND SIMULATION VALIDATION 

In order to determine if a detector composed of a matrix of LGB and plastic 

scintillator can serve as a suitable antineutrino detector, experiments were conducted to 

determine the scintillation light attenuation length, capture efficiency and neutron 

lifetime in the prototype detectors.  For purposes of Monte Carlo simulation, a computer 

model of the detector was also built using GEANT44 [19].  The computer model was 

validated through comparison with the experimental data.   

Three separate experiments were conducted on the prototype detectors.  First, 

scintillation light attenuation length measurements were conducted to determine the 

attenuation in the new material compared to standard plastic scintillators.  Additionally, 

the scintillation experiment allows for calibrating the analog-to-digital converter channels 

to electron-equivalent energy.  Second, experiments to determine capture efficiency were 

conducted to determine how well neutron capture on Li and B can be distinguished from 

gamma interactions in the plastic scintillator and to measure the capture efficiency for B 

and Li for comparison to the Monte Carlo simulation.  The final experiment is a 

measurement of the time between detector events, or interevent time.  The interevent time 

gives estimate of the neutron lifetime, and as well as, a second parameter to validate the 

Monte Carlo simulation.  The interevent time was recorded only for Detector 1. 

A. SCINTILLATION LIGHT ATTENUATION LENGTH 

1. Purpose 

The scintillation light attenuation length, SLα , is a measure of the absorption and 

scattering of the scintillation light by the inhomogeneous detection medium as the light 

propagates through the detector material.  In the central region of the detector, the 

primary source of scintillation light attenuation is absorption in the detector material.  

The effect of this attenuation is an exponential decay in light received at the PMTs in 

which SLα  is the decay constant.   

                                                 
4 GEANT4 is software toolkit developed by CERN for Monte Carlo simulation of particle transport. 
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A full scale anti-neutrino detector comprised of LGB/plastic would ideally have 

array elements with lengths of ∼ 1 m to reduce complexity and cost.  The lower energy 

interaction of neutron capture on boron should be identifiable throughout the length of 

the detector by PMTs at both ends of the detector.  Being able to detect such an 

interaction at the middle of the detector would be a minimal requirement.  Although very 

high resolution is not required for antineutrino detection, the energy resolution can affect 

the ability to discern if the detected energy is consistent with the energy deposited by the 

positron rather than background interactions.  A resolution below 30% at the farthest 

point of the detector would be usable.  The minimal acceptable would be ∼ 40% 

resolution.  The background gamma energy spectrum falls off significantly above 2.6 

MeV, but above 40% resolution the background spectrum can be spread higher than 4 

MeV.  This would force energy cuts on positron energy above the background and result 

in positron detection efficiencies of 30% or lower.  

2. Experimental Setup 

The experimental setup used to determine the scintillation attenuation length 

consists of two R1250 Hamamatsu PMTs placed in contact with the open faces of the 

detector cylinder with optical grease.  The PMT and scintillator assembly was wrapped in 

tape to prevent outside light from reaching the PMTs.  The high voltage is supplied by a 

CAEN N1470 High Voltage Supply.  The signal from both PMTs is split by a CAEN 

N625 Fan-In/Fan-Out (FIFO).  A line from each PMT runs to a CAEN V814 Low 

Threshold Discriminator run in “OR” mode.  The threshold for each channel was set to -

25 mV.  The discriminator trigger was sent to a Phillips Scientific Mod794 Gate/Delay 

Generator.  The gate was set to 600 ns.  The gate signal was then sent to a CAEN V792N 

16 ch Charge-to-Digital Converter (QDC).  One line from each PMT in the FIFO was 

sent to a 52 ns delay line then on to the QDC.  Another line from each PMT in the FIFO 

was sent directly to the QDC.  This arrangement allows for the QDC to integrate the full 

signal from a pulse in the delayed line, as well as an integral over the tail of the pulse 

from the prompt line.  The gate is positioned by set-screw and cable length such that the 

gate turns on when a typical gamma pulse is complete (approximately 50 ns).  Figure 5  
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shows a diagram of the experimental setup.  Only the full signal (dashed line) is used for 

the scintillation attenuation measurement.  The tail integration (solid line) is used for the 

capture efficiency experiment.   

 

 
Figure 5.   Schematic diagram of scintillation light attenuation and neutron capture 

efficiency experimental apparatus. 

 
Figure 6.   Timing diagram for scintillation light attenuation and neutron capture 

efficiency experimental setup. 
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A gamma source was used to create scintillation reactions in the detector.  The 

gamma source was 22Na, with strength on 1 October 2008 of 10.14 Ciμ .  The 22Na decay 

produces a gamma ray of energy 1.275 MeV, as well as a positron that produces two 

0.511 MeV gammas upon annihilation within the source capsule.  The source was placed 

in a “fan” collimator as shown in Figure 7.  The slit between the lead bricks allowed a 

“slice” of detector to be irradiated by the gamma source.  The 4mm slit width allowed a 

sufficient gamma rate while limiting the uncertainty of the lengthwise position of the 

gamma ray interactions to less than ± 0.75 cm.  The gain was normalized between PMT1 

and PMT2 by adjusting the voltage of the PMTs while the center of the detector was 

exposed to the collimated 22Na gamma source.  The voltage was adjusted such that the 

spectrum of the full energy line from both PMTs matched as near as a 1 V adjustment 

would allow. 

 

 

 
Figure 7.   Top down view of Gamma ray “fan” collimator.   
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The collimator was moved laterally along the detector and data was taken while 

positioned at the center of the detector and at several locations on either side of the 

center.  The experiment was run for 300 s at each position.   

The QDC channel of the peaks associated with the 0.511 MeV and 1.275 MeV 

gamma rays from the 22Na source were used as independent measurements of the 

scintillation light received by the PMTs.  Gamma rays ∼ 1 MeV in a low Z value, small 

detector will typically pass through without interaction.  The few that do interact 

generally only deposit a portion of their energy through a single Compton scatter event.  

Compton scattering can impart a continuum of energy to an electron that ranges from 0 

MeV to approximately 0.255 MeV less than incident gamma ray energy.  The Compton 

edge is at the maximum of the continuum, Compt. Edge gammaE =E 0.255 MeV−  [1].  The 

“edge” is broadened by the energy resolution of the detector.  For this experiment, the 

shift in the peak associated with the Compton edge is used to determine the relative 

amount of scintillation light reaching the PMTs.   

The output from the QDC has a “pedestal” reading slightly above zero, so that 

pulse undershoot can be recorded, i.e., integration of zero charge results in a non-zero 

reading. Since the QDC has a small non-zero current while the gate is open the pedestal 

energy is a small Gaussian peak slightly below the energy of the threshold triggered 

events.  The text file output of the data acquisition (DAQ) setup was read into a ROOT5 

file and offset to remove the QDC pedestal [20].  Using the ROOT data analysis 

framework, Gaussian functions were fit to the peaks in the gamma energy spectrum using 

the MINUIT package 2χ  minimization fitting routine.  The Gaussian mean was taken as 

the peak location.  In this experiment, the variation of the peak locations as the collimated 

gamma source is moved long the detector length is used to determine the attenuation 

coefficient of the scintillation light.  Since this measurement only requires examination of 

the relative change in the amplitude of PMT pulses, uncalibrated spectra are used.  The 

ADC channel of the peaks was plotted versus distance from the face of the  

 

                                                 
5 ROOT is a data analysis framework designed by CERN for large data sets. 
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PMT.  Fitting an exponential function to the plot gives a value for the scintillation 

attenuation length.  The two PMTs provide separate measurements of the attenuation.  

The experiment was conducted on both detector prototypes. 

3. Error Analysis 

The uncertainty in QDC channel peak location is taken to be the uncertainty in the 

mean of Gaussian fit.  The uncertainty in position is the quadrature sum of collimator 

centering error, collimator angular beam error and collimator beam width.  The 

exponential fit 95% confidence interval is determined in ROOT using the 2χ  fitting 

method.  The error sources are summarized in Table 1. 

 

Table 1.   Scintillation Light Attenuation Length Error Summary 

Source Type Detector 1 
Uncertainty 

Detector 2 
Uncertainty  

Detector Resolution QDC Channel 
(energy) 

From Fit From Fit 

Collimator Centering Position ± 0.2 cm ± 0.2 cm 
Collimator Angle Position ± 0.4 cm ± 0.4 cm 
Collimator Beam 
Width 

Position ± 0.75 cm ± 0.75 cm 

 Position Total ± 0.92 cm ± 0.92 cm 
 

4. Scintillation Attenuation Length Results 

a. Detector 1 

Figure 8 shows the plot of QDC channel (i.e., uncalibrated energy)versus 

position of the gamma beam for detector 1.  The level off in peak location at positions 

closer than 4 cm from the face of the PMT is due to primarily to interactions having a 

different propogation regime partially as a result of average solid angle at such close 

distances.  Interactions are occurring throughout the “slice” of the detector exposed to the 

collimated fan of gamma rays.  The average solid angle of the PMT face from any given 

location in the slice begins to fall off as the collimator is moved closer than 2 cm to the 

PMT face.  There is good agreement between the attenuation of the two different gamma 
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lines.  The difference between the left and right PMTs, however, is markedly different.  

Taking the average of the four measurements gives an SL 17.8 5.5α = ± cm.  In further 

testing of the attenuation length, light guides should be used to reduce the effect of solid 

angle at the ends of the detector.  A more precise collimation and positioning method 

would be desirable as well. 

   

 
Figure 8.   Detector 1 plots of QDC channel (uncalibrated energy) vs. distance of the 

gamma source “beam” from the face of the PMT for a) Left PMT with 1.275 
MeV gamma, b) Left PMT with 0.511 MeV gamma, c) Right PMT with 
1.275 MeV gamma, d) Right PMT with 0.511 MeV gamma. 

b. Detector  2 

The plots shown in Figure 9 for Detector 2 appear much cleaner than those 

of Detector 1.  This is primarily due to the fact that gamma collimator was positioned 

only as close as 11 cm for either PMT.  There is close agreement of the left and right 

PMT, as well as between the separate gamma energies.  The average of the four  
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measurements is SLα  = 18.2 ± 2.6 cm.  The large confidence intervals in the scintillation 

light attenuation length for Detector 1 does not allow for reasonable comparison of the 

effect of crystal size on light attenuation. 

 

 

Figure 9.   Detector 2 plots of QDC channel (uncalibrated energy) vs. distance of the 
gamma source “beam” from the face of the PMT for a) Left PMT with 1.275 
MeV gamma, b) Left PMT with 0.511 MeV gamma, c) Right PMT with 
1.275 MeV gamma, d) Right PMT with 0.511 MeV gamma. 

5. PMT Signal Combination Algorithm 

The scintillation light attenuation data was also used to check the suitability of a 

simple algorithm to combine the left and right PMTs into a scaled single energy result.  

By assuming the attenuation is approximately the same in both directions and that there is 

no falloff in the attenuation near the PMTs, the energy as seen by the left and right PMTs  
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can be combined into a signal that approximates the energy of the interaction had it been 

detected in the center of the detector.  If Ecenter is the energy for an interaction at the 

center of the detector (x = 0), 
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This simple algorithm does not account for reflectivity or leveling off of 

scintillation light for interactions near the PMT.  The effect of reflectivity in a relatively 

wide detector is minimal and can be ignored.  Accounting for the leveling off of 

scintillation light at the PMT is feasible.  In practice, though, light guides would be used 

between the scintillator and the PMTs to reduce this effect by spreading the light from 

interactions at the ends of the PMT more uniformly across the photocathode.  As can be 

seen below in Figure 10, the algorithm as applied to off-center gamma beam interactions 

closely reproduces the spectrum of the beam oriented towards the center.   

 

 
Figure 10.   Histograms of the uncalibrated combined PMT energy spectrum from a 

Na22source at several lateral positions along Detector 1 compared to the 
energy spectrum with the source oriented through the center of the detector. 
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The shift in the peaks related to the Compton edge for both the 0.511 MeV 

gamma rays and the 1.275 MeV gamma rays were less than 5% when the gamma ray 

beam was approximately 1.2 cm from the face of a PMT and less than 5% for positions 

closer to the center.  This shows that the combined signal reproduces the energy of the 

interaction as though it were at the center of the detector for interactions throughout most 

of the volume of the detector. 

 

 
Figure 11.   Histograms of the uncalibrated combined PMT energy spectrum from a 

Na22source at several lateral positions along Detector 2 compared to the 
energy spectrum with the source oriented through the center of the detector. 

For Detector 2, the shift in the peak related to the gamma ray’s Compton edge 

was approximately 15% for the 0.511 gamma ray and 5% for the 1.275 gamma ray with 

the gamma source 3.8 cm from the face of the left PMT.  These values indicate that the 

combination algorithm does a suitable job of calibrating the energy of interactions 

throughout the detector with minimal broadening in the energy spectrum. 

6. Energy Calibration and Energy Resolution 

The energy scale for the QDC was calibrated using the gamma-ray experiment.  A 

simulation of  detector response to the mono-energetic 0.511 MeV and 1.275 MeV 

gamma rays of a simulated 22Na source was built in GEANT4.  As shown in Figures 12 

and 13, the simulation included the “fan” collimated gamma source oriented toward the  
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center of the detector.  The simulation assumed the energy deposited by the gammas was 

linearly proportional to the deposited energy.  The energy per gamma event was 

converted by histogram plot into a detector spectrum with “ideal” resolution.  

 

  

Figure 12.   Side view of GEANT4 
visualization of gamma 
collimator.  Red tracks are 
gammas. 

Figure 13.   Top down view of GEANT4 
visualization of gamma 
collimator. 

 

To add resolution to the spectrum a ROOT script was built to take the bin content 

of the ideal spectrum and convolute it with a Gaussian distribution of user defined 

resolution.  To determine the correct resolution input the process was iterated until the 

sigma and mean of a Gaussian fit the peaks associated with the two gamma lines for the 

simulation and experiment within 5 percent.  Figure 14 shows the calibration for Detector 

1 and Detector 2, respectively. 
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Figure 14.   Comparison of the energy spectrum recorded by the left and right PMTs 
after the scaling factor is applied and the energy spectrum of the simulation 
for a) Detector 1 and b) Detector 2. 

By scaling resolution determined in the simulations, an estimate of the energy 

resolution of the actual detectors can be obtained.  These estimates indicate that Detector 

1 has an energy resolution at the center of the detector, RC of approximately a 15% at 1 

MeV and Detector 2 has a RC of approximately 20% at 1 MeV.  As shown above in 

Figure 14, the combined PMT signals have approximately the same resolution as the 

single PMT at the center of the detector.  As long as the number of photo-electrons 

generated in the PMT’s photocathode is sufficiently large (i.e., greater than 500) the 

combined PMT energy resolution throughout the detector volume can be approximated as 

the resolution at the center of the detector.  For lower energy interactions or in longer 

detectors, this assumption will not hold.   

Measurement of the position of the two peaks provides an energy scaling factor 

for calibration of the detector as a whole.  In Detector 1, the scaling factor is 722 QDC 

channels/MeV using the higher energy peak and 736 QDC channels/MeV using the lower 

energy peak.  For Detector 2, the scaling factor is 449 QDC channels/MeV using the 
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higher energy peak and 435 QDC channels/MeV using the lower energy peak.  In the 

capture efficiency experiments, the scaling factor based on the 1.275 MeV peak was used 

as it is more representative of the energy values of neutron capture on 6Li.  

B. CAPTURE EFFICIENCY 

1. Purpose 

The experimental capture efficiency, capη , is the number of neutrons captured per 

number of neutrons that pass through the detector expressed as a percentage.  It can also 

be expressed as an element specific capture efficiency, such as capture efficiency of 6Li, 

6Li
η .  The purpose of measuring capη  is to demonstrate the method of neutron particle 

identification and to validate the computer model of the detector.  The capη  of a full scale 

antineutrino detector will vary from the experimental measurement for two reasons.  

First, capη  is dependent on the energy of the incident neutrons.  capη  measured with a high 

energy neutron flux will be less than that for a low energy flux as many more of the 

neutrons will escape the detector.  The neutron energy associated with the spontaneous 

fission of 252Cf is primarily ∼ 1 MeV; whereas, the neutron energy associated with 

inverse beta decay for antineutrinos emitted from a nuclear reactor is ∼ 1–100 keV.  The 

second reason is that a full size detector would be significantly larger than the prototype 

detectors, and therefore, significantly fewer neutrons would escape the detector. 

2. Experimental Setup 

The electronics for the experimental setup used to determine capη  was the same as 

that used in the scintillation attenuation measurement.  The tail integration output in this 

experiment is used in the particle identification (PID) of neutron capture in LGB versus 

other interactions in the scintillator.  The ratio of the integral of the full pulse to the 

integral of the tail of the pulse gives an indication of the nature of the interaction.  This 

ratio is called the PID ratio or simply the PID.  If the PID is greater than 0.5 than the  
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signal is, it has the characteristics of a neutron capture in LGB.  If it is below 0.2 than the 

signal, it has the characteristics of gamma ray Compton scattering or neutron 

thermalization.   

The detector was placed on a cardboard box 1 m off the ground to reduce the 

effect of neutron ground scatter–an effect that is difficult to reproduce in simulations.  A 
252Cf source was placed 30 cm from the centerline of the detector.  

The output text file of the collected data is read into the ROOT data analysis 

framework, and the PMT outputs are combined and calibrated to the energy spectrum as 

described above.  The number of neutron captures, detectN , is determined in the 

experiment by making appropriate energy and PID cuts to isolate the Li and B neutron 

captures and then subtracting a background spectrum with the same cuts applied.  For 

example, the Li captures have high energy and high Etail to Efull ratio. Then requiring the 

energy of Efull to be greater than 1.5 MeVee and less than 3 MeVee and the Etail to Efull 

ratio greater than 0.6 and less than 1.0.  One can then sum the number of events that pass 

the cut to determine the number of neutrons captured.  Conducting the same cuts on the 

background run of the same duration provides an estimate of the number of neutron 

captures not due to the source.   

The number of neutrons that are expected to pass though the detector, inN , is 

calculated from the activity of the sample and the solid angle of the detector as seen from 

the source.  The source used in these experiments is a 252Cf source that was 5.0 Ciμ  on 3 

October 2007.  Since 252Cf has a half life of 2.645 years, source decay must be taken into 

account.  The time elapsed since the activity measurement was 886 days for Detector 1 

and 892 days for Detector 2.  252Cf undergoes spontaneous fission in 3.9% of its decays.  

Each fission produces on average 3.76 neutrons.  The source was contained inside of a 2 

cm radius, 8 cm tall cylindrical polyethylene container with a 0.95 cm thick wall.  Due to 

the effect of the container on neutron direction and the three dimensional nature of the 

solid angle, it was best to combine the two effects into the solid angle fraction, fracΩ , and 

determine the value through Monte Carlo simulation in a GEANT4.  fracΩ was determined  
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by dividing the number of neutrons that pass into the detector in the simulation by the 

known number of neutrons generated from the isotropic source inside the container.  

Detector 1’s fracΩ  is 0.0136 and Detector 2’s is 0.0382.   

Thus, the following formula is used to estimate the number of neutrons that enter 

the detector during the experiment. 
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where 0A  is the measured activity of the source in decays per second, dΔ  is the time 

since the activity measurement in days, 1/2λ  is the half-life of the source in days, B is the 

fraction of spontaneous fissions per decay, C is the fraction of neutrons per spontaneous 

fission, detΩ  is the solid angle of the detector as seen from the location of the source and 

T  is the time interval of the experimental run. The experimental capture efficiency is  
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Ideally, the signal from a gamma ray is quickly identified and rejected by 

inspecting the ratio of the tail integral to the full integral.  Using this particle 

identification (PID) technique, a gamma pulse should end up being near zero and a 

neutron pulse should be a significant fraction of one.  In practice, there are several 

factors, which complicate this analysis.  Figure 15a shows the gamma interaction, as seen 

prior to input into the QDC, displayed on an oscilloscope output. 

The long 600 ns gate allows additional pulses to pile-up in the integration, but is 

necessary to collect the large fraction of the LGB scintillation light that is required for a 

good energy measurement.  If one gamma pulse triggers the gate and then a second 

gamma pulse of similar amplitude occurs within the gate the PID would indicate that the 

event was a neutron if the energy of the combined gammas was similar the quenched Q-

value energy of a lithium or boron neutron capture.  These will be referred to as “double 
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gamma” interactions, although they could potentially be due to more than two gammas in 

some instances.  The false signal due to double gamma hits is rate dependent.  Very high 

gamma rates would make this PID method unusable.  Figure 15b shows an example of 

the signal from a double gamma event. 

Gamma pulses can also alter the PID of a true neutron capture.  Gamma pulses 

inside the gate of both the tail and full integral will add some broadening to the neutron 

capture energy.  At low rates, this is an insignificant contribution.  Gammas can also 

“pre-trigger” the gate and then a neutron signal can enter the integration later.  This will 

result in a shift in the tail/full ratio and energy but is often still within the cuts and should 

can be counted as a neutron capture if most of the neutron energy is integrated.  This is 

again a source of broadening in the energy detected.   

Capture on boron results in a 0.48 MeV gamma in 93% of captures and will 

complicate identification of these events.  The gamma energy deposited in the detector 

will take on a Compton spectrum and many of the gammas will escape entirely.  The 

difference between a boron capture signal with and without the associated gamma ray can 

be seen in Figures 15c and d.  The gamma from the interaction will also have the short 

pulse associated with the plastic scintillator, and therefore, it will push down the tail/full 

ratio by an amount that depends upon how much energy the gamma deposits. 

Neutrons capturing on lithium will produce a distinctive tail/full ratio and at a 

higher full energy than the Boron as seen in Figure 15e.  Capture on either Li and B 

produces an α  particle, but the second ion from the 6Li interaction is a triton whereas the 

second product of a boron interaction is a 7Li nucleus.  The lighter triton will be less 

quenched than the 7Li nucleus, and therefore, captures on 6Li will have a proportionally 

higher full energy than would be expected from the ratio of their Q-values. 

 



 37

 

Figure 15.   Oscilloscope output of a signal from a single PMT showing various 
interactions in the detector.  a) Gamma ray interaction b) Two gamma rays 
that would produce false neutron capture signal  c) 10B neutron capture 
without gamma d) 10B neutron capture with gamma e) 6Li neutron capture 
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3. Experimental Results 

a. Analyzing Events Before Cuts 

Figure 16 shows a 2-D histogram of the events recorded during a 3600 s 

exposure to the 252Cf source for Detector 1.  Figures 16a and b show events as seen by the 

left and right PMTs individually.  Figure 16c shows the results after combining the 

signals.  The red ellipse shows the region that associated with neutron capture on 10B and 

the blue ellipse shows the region associated with capture on 6Li.  The sharpening of the 

capture energy for both the Li and B captures due to the PMT amplitude combination 

algorithm that corrects for event position is clearly evident.  A qualitative measure of the 

effect of the combination algorithm can be gained by comparing the full width half-max 

(FWHM) of a Gaussian fit to the full energy of the Li captures in the individual PMTs 

versus that of the combined signal.  The FWHM of the individual signal is 1.24 MeVee 

for the left PMT and 1.36 MeVee for the right PMT.  The FWHM for the combined 

signal is 0.58 MeVee.   

The events between the two regions should be neutron captures as well, 

but it is unclear at this point, whether they are primarily due to 6Li or 10B.   

Figure 16d shows the combined signal of a 3600s background run.  The Li 

capture region is still distinct, but the B capture is difficult to pick out against the 

background gammas. 
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Figure 16.   2-D histograms of Etail/Efull vs Efull  for Detector 1 over a 3600 s exposure to 
the 252Cf source by a) Left PMT, b)Right PMT, c) the combined PMT 
algorithm and d) background combined PMT signal. 

 
Figure 17 shows the same 2-D histograms for Detector 2.  The energy 

broadening for Li capture in the individual PMTs is significant.  It is not possible to fit a 

Gaussian to the individual PMT signals.  But after combination the signal becomes much 

more distinct.  The FWHM of the full energy of Li capture after combination is 0.59 

MeVee.  This is very nearly the same as for the much shorter Detector 1. 
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Figure 17.   2-D histograms of Etail/Efull vs Efull for Detector 2 over a 3600 s exposure to 
the 252Cf source by a) PMT1, b) PMT2, c) the combined PMT algorithm and 
d) background combined PMT signal. 

b. Energy and PID Cuts 

Determining the neutron captures on 6Li can be done with some simple 

cuts on energy and PID.  For Detector 1 the cuts were Efull>1.5 MeVee and 

0.65<Etail/Efull<1.0.  Subtracting the background counts gives the total number of 

neutrons captured on Li during the 3600s run.  The cuts to determine 10B capture include 

a diagonal cut to exclude as many background double gamma hits as possible.  The cuts 

for 10B are Etail/Efull>1.1 MeVee–Efull/1.4 MeVee and 0.65<Etail/Efull<1.0. 

The primary source of error in Ndetect for Li is in accounting for the region 

between Li and B captures.  To get an estimate of the error, Gaussians functions are fit to 

the full energy spectrum in the region of the B and Li captures after cuts.  The error is 

taken to be half the number of events that are 2σ  higher in energy from the B capture 

region and 2σ  lower in energy from the peak of the Li captures after cuts.  For boron 
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capture, there are two additional significant sources of error.  The first is the large 

number of double gamma hits in the same region.  This is a source of over counting and 

is estimated to be approximately 10% of the total counts for Detector 1 and 15% for 

Detector 2.  The second is the error in undercounting due to the missed triggers due to the 

low peak voltage during from a capture on 10B.  The undercount is estimated at 10% for 

Detector 1 and 15% for Detector 2. 

The error in Nin is due to 5% uncertainty in the activity of the 252Cf source 

and the error in fracΩ  due to source placement uncertainty.  The error in fracΩ  was 

estimated by running the Monte Carlo simulation with the source 1 cm closer and 1 cm 

farther from the detector. 

 

Table 2.   Summary of capη  error sources 

Source Affects Detector 
1 Error 

Detector 2 
Error  

252Cf activity Nin ± 5% ± 5% 

Source Placement, fracΩ  Nin ± 7.3% ± 6.7% 

 Nin total ± 8.8% ± 8.3% 

Region Between Li and B Ndetect ± 9.5% ± 8.3% 
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Figure 18.   2-D Histogram of Etail/Efull vs Efull after cuts for Detector 1 and the projection 
of the number of events onto the Efull axis.   

Ndetect for Li using this method is 11687 ± 1220 events as lithium captures 

and 15226 ± 4281 boron captures during the 3600s run with the 252Cf source.  During the 

3600s background run, the detector identified 274± 73 lithium captures and 1504± 410 

boron captures.  The number attributed to the 252Cf source then is 11413± 1222 Li 

captures and 13722± 4301 boron captures.   

The number of neutrons expected to pass into the detector based on 

Equation 2 is 663,800± 58410.  This results in 6 Li
η  of 1.72± 0.24% and 10B

η  of 

2.1± 0.68 percent.   

The ratio of Li to B captures is much closer to one than the number 

anticipated by a purely cross section based analysis.  This is likely due to the fact that 

many of the boron captures were below the threshold of the trigger.  If the oscilloscope 

was set to trigger on the PMT signal at a threshold below the discriminator threshold, 

occasional LGB-like signals could be seen that did not trigger the gate.  Although the full 
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energy of a capture on B was well above that of the low energy gammas that trigger, the 

B signal is spread in time and often the signal never goes below the -0.25 mV trigger.  An 

attempt was made to lower the threshold so that additional B captures could be counted.  

A threshold decrease, however, also greatly increases the gamma pileup and false B 

capture signals.  Alternative trigger methods should be investigated. 

The variation from the analytical estimate of 6Li to 10B capture ratio of 0.5 

is unexpected.  The ratio is also found to be ∼ 0.5 in the Monte Carlo simulations shown 

below.  Since the triggering for B capture is not certain, the number of number of 

detected B captures can be seen as an indication of how many Boron captures are missed 

due to poor trigger function.  The double gamma rate in the region of B capture is also 

significant, so an estimate of missed 10B capture of ∼ 50% is reasonable.  
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Figure 19.   2-D Histogram of Etail/Efull vs Efull after cuts for Detector 2 and the projection 

of the number of events onto the Efull axis.   

The cuts on Detector 2 are identical to those made on Detector 1.  Detector 

2 identified 23691± 2142 events as lithium captures and 43345± 13223 boron captures 

during the 3600s run with the 252Cf source.  During the 3600s background run, the 

detector identified 2837± 1232 lithium captures and 8394± 3668 boron captures.  The 

number attributed to the 252Cf source then is 21554± 2471 Li captures and 34951± 13720 

boron captures.   

The number of neutrons expected to pass into the detector based on 

Equation 2 is 1.564x106± 0.129x106.  This results in 6 Li
η  of 1.38± 0.14 percent.  
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4. Capture Efficiency Monte Carlo Simulation 

The GEANT4 simulation for capture efficiency used a 12.7 cm diameter, 12.3 cm 

tall cylinder of polyvinyl toluene scintillator with 1% by weight LGB crystal cuboids of 1 

mm x 0.6 mm x 0.2 mm for Detector 1.  Detector 2 was modeled with a polyvinyl toluene 

cylinder of 12.7 cm diameter, 35.1 cm tall cylinder, 1% by weight LGB cuboids of 2 mm 

x 1.2 mm x 0.4 mm.  The LGB particles are randomly distributed throughout the plastic 

cylinders with random rotational orientation.  The neutron particles were generated inside 

of a 2 cm radius, 0.95 cm thick wall, 4 cm tall cylindrical polyethylene container at 30 cm 

from the centerline of the detector with an energy spectrum of 252Cf.  The 252Cf spectrum 

was generated from the equation: 

  

 ( ) ( ) 1/20.88 sinh 2.0EN E e E−∝ ⎡ ⎤⎣ ⎦  (4) 
 

where ( )N E  is the number of neutrons of energy E in MeV per unit energy interval [21]. 

In a simulation of 3x106 neutrons emitted from a 252Cf source 6 Liη  for the model of 

Detector 1 was 1.47%± 0.25 percent.  The lithium capture to boron capture ratio was 

0.51± 0.01.  The simulation of Detector 2’s 6 Liη  was 1.76%± 0.26% and the lithium to 

boron capture ratio was 0.51± 0.01.  The error in 6 Liη  is dominated by the uncertainty in 

the average smallest dimension of the LGB particles.  The error is estimated by running 

the same simulation with 50% larger and 50% smaller LGB particle thickness.   

5. Comparison of Experiment and Simulation 

Only the Li capture efficiency values from the experiment are suitable for 

comparison to the simulation.  The potential to isolate the boron capture efficiency 

certainly exists and future work to determine a more accurate value would be useful.  One 

factor that complicates the analysis is that the 252Cf source emits a spectrum of gamma 

rays during the spontaneous fission process. The gamma rays increase the true 

background of gammas during the experiment with the 252Cf present.  In this analysis,  
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only the gammas present without the source are subtracted as background.  Further 

experiments should consider shielding the 252Cf source with lead, which should 

disproportionately attenuate the gamma rays over the neutrons. 

 

Table 3.   Comparison of Experimental and Simulated 6Li capture efficiency 

 6 Liη  (%) 6 Liδη  (%) 

Detector 1 Experiment 1.71 0.24 
Detector 1 Simulation 1.47 0.25 
Detector 2 Experiment 1.38 0.14 
Detector 2 Simulation 1.76 0.25 

 

Considering the obvious manufacturing imperfections in the physical detector and 

the uncertainty in true distribution and size of the LGB shards the experimental and 

simulation values for Li capture efficiency are sufficiently close to validate the model of 

the detector in GEANT4.   

C. INTEREVENT TIME EXPERIMENT AND SIMULATION 

1. Purpose 

The interevent time is the time between successive scintillation pulses in the 

detector.  The inter-event time is an important measurement for antineutrino detection.  In 

an inverse beta decay event, since the positron annihilation is nearly instantaneous, the 

time between events for a positron annihilation-neutron capture pair is defined by the 

mean neutron lifetime.  For an antineutrino detector, shorter lifetimes are better.  The 

longer the neutron lifetime, the lower the background rate must be in order to distinguish 

the associated neutron capture event from the uncorrelated background that must be 

statistically subtracted, leading to larger uncertainty in correlated rate.  Unless the 

positron and neutron can be exactly identified, there will always a natural background 

rate of coincidental pulses.  The background rate can be characterized as a Poisson 

process and therefore the time between events for the background will be a decaying 

exponential with a decay constant of 1/event rate.  Determining the lifetime of the 
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neutron in the LGB/plastic detector analytically would be difficult due to the 

inhomogeneous nature of the material.  It should, however, be on the order of 1-10 sμ .  

A simple analytical estimate can be made by assuming that the LGB is 

homogeneously distributed throughout the detector and that the neutron capture cross 

sections for Li, B, and Gd are all proportional to the inverse of the velocity of the neutron 

[22].  The lifetime of the neutron in the detector is then  

 
 

1
( ) ( )N LGB V Vτ σ

−
⎡ ⎤= ⎣ ⎦  (5) 

 

where ( )N LGB  is the average number density of 6Li, 10B and 155,157Gd nuclei in the 

detector.  ( )Vσ  is the average neutron capture cross section of the nuclei for neutrons of 

velocity, V .  Evaluating Equation 5 for a homogeneous LGB distribution gives 5 sτ μ≈ .  

This does not account for the rapid fall off in Gd capture cross section at higher velocity 

and therefore the estimate is lower than the true value for a homogeneously distributed 

LGB/plastic detector. 

 

 

Figure 20.   Schematic of interevent time experimental apparatus 
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The interevent time measured in this experiment should be greater than the actual 

lifetime of a neutron resulting from inverse beta decay.  The 252Cf neutrons are on 

average 2–3 orders of magnitude higher energy than those from inverse beta decay, and 

therefore, require a longer time to reach an energy that is easily captured on LGB. 

The interevent time can also be used as a method of determining the suitability of 

a GEANT4 simulation of the detector.  To get an experimental value for a neutron 

lifetime, fast neutrons from a 252Cf source are used.  In this mode, the detector is 

essentially acting as a fast neutron detector, specifically, a capture-gated neutron 

spectrometer.  The interevent time in this mode is the time between the recoil pulses from 

the neutron thermalization and the capture pulse.  Postprocessing of the GEANT4 

simulation can report the time-to-capture of a generated neutron.  The simulation data 

should have a mean lifetime that matches that measured in the interevent time 

experiment.   

To record the interevent times, the signal from a single R1250 Hamamatsu PMT 

is split and sent into two separate channels of a CAEN N568B spectroscopy amplifier.  

The OUT channel is a Gaussian shaped, such that the amplitude of the outgoing pulse is 

proportional to the charge of the input pulse.  The shaping constant was set to 0.2 us.  A 

fast output from the spectroscopy amplifier is sent to a CAEN V812 constant fraction 

discriminator that sends a trigger pulse to a CAEN V1495 field programmable gate array 

(FPGA).  The FPGA is programmed to record the time between triggers and send a gate 

to two CAEN V785 peak sensing analog-to-digital converters (ADC).  The ADCs record 

the energy of the pulse associated with the trigger.  The modules are controlled though a 

LABVIEW interface.  The minimum detectable time between events for the system is 1.5 

us.   

To determine the neutron capture lifetime of the prototype detector, it was first 

tested with a 60Co gamma source.  The source was placed 20 cm from the face of the 

detector and interevent times were recorded for 1800 s.  Figure 21 shows the expected 

exponential decay of the interevent times.  The event rate as determined by an 

exponential fit is 749.5± 1.3 s-1.  A rough estimate of the event rate provided by the  
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LABVIEW DAQ during the data collection was 560 s-1.  The event rate from fitting an 

exponential is expected to be larger due to the considerable dead-time of the DAQ 

system. 

 

Figure 21.   Interevent time for Detector 1 with a 60Co gamma source at 20 cm. 

Following the 60Co measurement, the 252Cf source was then placed approximately 

2.5 cm from the detector face and data collected for 1800 s.  Figure 22 shows the 

histogram of interevent times with the neutron source present.  The data exhibit the long 

decay exponential expected due to background, 1,expτ .  The expected second decay 

constant due to the neutron lifetime was observed with time constant, 

2,exp   29.7  4.0 sτ μ= ± .  There was also an apparent third exponential with a time 

constant, 3,exp   3.78 0.48 sτ μ= ± .  The third exponential was initially unexpected.  Figure 

23 shows a closer view of the interevent times below 200 sμ . 
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Figure 22.   Interevent times for Detector 1 with a 252Cf source at 2.5 cm. 

 

Figure 23.   Interevent times <200 sμ  for Detector 1 with a 252Cf source at 2.5 cm. 

The GEANT4 simulation for interevent time used the same model of Detector 1 

as did the capture efficiency simulations.  The neutron particles were generated at a 

location 2.5 cm from the face of the detector with an energy spectrum of 252Cf.  The 
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simulation is set to output the time difference between when the neutron was created and 

when it is captured.  The time of flight from the point of origin to the detector is on the 

order of 1 ns and is neglected.   

 

 
Figure 24.   Monte Carlo simulation of interevent time for Detector 1 with 252Cf neutron 

energy spectrum. 

The results of the simulation are seen in Figure 24.  There is no background in the 

simulation so the long decay tail is not present; however, both the expected neutron 

lifetime constant, 2,simτ  and the shorter decay constant, 3,simτ  are clearly present.  2,simτ  is 

well within the confidence interval of 2,expτ .  The disagreement between the simulation 

and experiment for 3τ  is likely due to inaccuracy of LGB particle geometry modeling, 

which as is shown below has a marked effect on neutron lifetime.  3τ  is, however, on the 

order of the analytically estimated decay constant for an entirely homogeneous 

distribution of LGB. 

Although the detector is inhomogeneous, the long path length of low energy 

neutrons in the plastic was expected to result in the detector appearing nearly 

homogeneous to the neutrons.  The most likely explanation for there being two distinct 

decay constants seems to be based on LGB inhomogeneity.  The precise mechanism for 
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the two decay times has not been determined.  However, a simulation of the detector 

using varying LGB particle size does indicate that it is related to the LGB distribution 

inhomogeneity.   

Unlike a homogeneous detector, such as SONGS1 there is some effect from the 

inhomogeneous distribution of the particles.  To test this hypothesis a GEANT4 

simulation of the interevent time experiment was run with varying particle size.  In each 

of the simulations the total mass of LGB remained constant at 1% by weight.  The 

simulations using varying particle sizes showed that the smaller the particle size, and 

therefore more evenly distributed, the closer 2τ  and 3τ  came to being equal.  Figure 25 

shows how decreasing the particle size brings 2τ  and 3τ  closer together.   

 

 
Figure 25.   Interevent times for varying volumes of spherical LGB particles. 

The close agreement between experimental measurement and simulation of the 

two neutron lifetime decay constants is additional validation of the GEANT4 model of 

the detector.  
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IV. INVERSE BETA DECAY NEUTRON SIMULATIONS 

With a validated GEANT4 model, the neutron production and energy were then 

adjusted to simulate neutrons produced through inverse beta decay.  These simulations 

were intended to indicate the neutron capture performance of a full size (∼ 1 m3) detector 

with neutron energies in the range of those from inverse beta decay (tens of keV) and 

determine potential improvements to the design of the detector for antineutrino detection 

purposes.  Adjustments were made to LGB particle size, loading and isotopic constituents 

independently to determine their effect on capture efficiency.  

Although the model uses a significantly different neutron generation method than 

the neutron source of the experiments, the model is still considered to be valid since the 

neutron capture mechanism is unchanged and the same energy regime is traversed by the 

higher energy 252Cf neutrons prior to capture.  

Before conducting simulations of a cubic meter sized detector it is important to 

consider how such a large detector would be built.  Almost certainly, a large detector 

would consist of an array of smaller cells.  Longer individual cells would require fewer 

PMTs and associated electronics.  Compactness requires that the maximum length be 

around 1m.   

To estimate the maximum usable length for a detector array element made of 

LGB/plastic, it is assumed that the scintillation light attenuation length of Detector 2 

holds at longer distances.  The limiting factor in a long detector is the statistics of photo-

electrons produced in the PMT.  The resolution of the detector depends on the number of 

photons reaching a PMT.  For an interaction at the far end of a detector, the photo-

statistic dependent component of the resolution,   

 

 Poisson limit
2.35R

N
=  (6) 
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will be dominated by the photo-statistics for the detector farthest away from the 

interaction [16].  N is the number of photo-electrons generated at the photocathode of the 

PMT from an interaction.  The components of resolution add in quadrature as in Equation 

7 [16].   

 

 ( ) ( )2 2
total Poisson limit intrinsicR R R= +  (7) 

 

Rintrinsic can be calculated from the 20% resolution for 1 MeVee interactions found at the 

center of Detector 2 estimated above.  First, the number of photo-electrons generated at 

the PMT from interactions at the center of Detector 2 must be estimated.  Equation 8 

shows how to calculate the mean number of photoelectrons generated in a PMT from an 

interaction at distance x from the face of the PMT [16].  

  

 SLx/0
x PMT2

PN e αη −=  (8) 

 

xN  is the number of photoelectrons generated in a PMT from an interaction at a distance 

x from the face of the PMT.  0P /2 is the number of photons generated by the interaction 

that go towards the PMT (the other half go towards the other PMT) and PMTη  is the 

quantum efficiency of the PMT.  The number of photons for a 1 MeVee interaction has 

been measured at  ≈14,000 [17].  The quantum efficiency of the R1250 Hamamatsu 

PMT in the LGB emission bandwidth is approximately 20 percent.  The number of 

photons at a PMT, N, for a 1 MeVee interaction, the center of Detector 2 then is 530.  

The intrinsic resolution is calculated by substituting Equation 6 into Equation 7 

and rearranging. 

( )
2

2
intrinsic total

2.35R R
N

= −                                            (8) 

Equation 9 gives a Rintrinsic for Detector 2 ≈17 percent. 

 
   



 55

Rearranging Equation 9 and requiring a minimum resolution at any point in the 

detector above 40% then allows a calculation of the required number of photons at a 

PMT from an interaction at the far end of the detector. 

 

 
( ) ( )

2

min 2 2
total intrinsic

2.35N
R R

=
−

 (9) 

 

Equation 10 is then used to determine the number of photo-electrons generated in 

the far PMT from an interaction required to ensure the resolution of the entire detector 

remains above 40 percent.  From the assumptions made thus far Nmin ≈40 photo-

electrons. 

The maximum length calculation depends upon whether the detector is designed 

to only detect Li capture or whether it will attempt to detect B capture as well.  The 

number of photons produced in a Li capture event is ≈35,000 and ≈9,000 for a B 

capture.  

The maximum length of detector is found by rearranging Equation 8. 

 

 
0

PMT

max SL
min

2L ln

P

N

η
α

⎛ ⎞
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= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (10) 

 

If only attempting to identify capture on Li then the Lmax is ≈  82 cm.  For capture on B, 

Lmax is ≈  56 cm. 

A. PATHS TO INCREASED NEUTRON CAPTURE EFFICIENCY 

1. Isotope Selection 

Changes in the isotope constituents of the LGB crystal appear to be a path to 

increased neutron capture efficiency.  Gd has a large capture cross section at low energies  
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and provides no PID in this design.  Elimination of the high capture cross section isotopes 

of Gd would be desirable, but highly expensive.  If a cheap source of Gd depleted of 
155Gd and/or 157Gd were available, it would clearly be the preferred option.   

The choice between 10B and 11B is a balance between increased capture efficiency 

and reduced maximum detector length.  Although the 10B capture signal is clearly usable 

in the small detector prototypes, the trigger method used in this study already cuts out 

some boron capture due to low maximum pulse height.  Unless the there is a 

manufacturing solution to increased optical attenuation length and an improved trigger 

method, it may be preferable to use 11B.  Some of the neutrons that would normally 

capture on B would be instead captured on Li.  If low capture cross section Gd is not 

economically feasible, however, the majority of the capture that had occurred on B will 

likely shift to Gd and only a small increase to Li capture will occur.  In this case, the 10B 

may still be preferred, as the number of detectable captures on B might still be greater 

than the increase in detectable captures on Li.  

2. LGB Loading 

Increasing the LGB loading will obviously increase the total neutron capture 

efficiency.  The effectiveness of increasing the loading is limited by the decrease in 

optical attenuation length caused by index of refraction mismatch and increased 

probability of gamma interaction with LGB causing false neutron capture signals.   

The ratio of increased capture efficiency as the loading is increased is important 

to understand.  The issue with adjusting the loading is how the increase in capture 

efficiency scales with the increase in scintillation attenuation length.  Though the index of 

refraction is close (1.58 for plastic and 1.66 for LGB) there is still a significant difference 

in attenuation length between standard plastic scintillators, which are typically ∼ 1m or 

more, and the LGB/plastic mix, which is ∼ 10 cm.  The reduction in attenuation length is 

unlikely to be due to the index mismatch alone.  Other factors seem likely to be the 

primary source of optical attenuation.  There are clearly some large out-gassing bubbles 

trapped in both prototypes and perhaps a significant amount of microscopic bubbles exist 

as well.  There is also the possibility that a gas boundary layer is created around the 
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particles during the manufacturing process.  A more thorough investigation of the optical 

properties of the LGB/Plastic matrix is required to determine the full nature of the 

attenuation length change due to changes in particle size and loading.  A sample of plastic 

scintillator without LGB but using the same process would help indicate whether the 

attenuation length reduction is due primarily to manufacturing factors or is inherent to the 

presence of the LGB shards.   

With increased loading, there is also potential for gamma rays to deposit most of 

their energy in an LGB particle and produce the same long decay pulse that is assigned to 

a neutron capture.  The effect of false positive neutron captures by this mechanism was 

not investigated.  At 1% by weight loading (0.3% by volume), loading this effect should 

be minimal.  However, at higher loadings, this mechanism may re-introduce a 

pronounced background of time coincidence gamma-rays that this detector design seeks 

to avoid.  The GEANT4 simulation back-end could be modified to determine an estimate 

of this effect, but does not do so currently. 

3. LGB Particle Size 

LGB particle size was adjusted with the thought that it would be beneficial to 

have a more uniform distribution of the LGB throughout the detector.  After initial 

simulations, particle size was found to have a pronounced affect on the capture 

efficiency.  In addition to the geometric distribution being more uniform for a smaller 

particle size, analysis of the simulation output indicated that at the low energies that the 

neutron takes on during thermalization, the neutron attenuation length in LGB becomes 

very small, ∼ 100um.  If the LGB loading is low enough that most neutrons approach 

thermal energies before capture, it is only the “skin” depth of 1–2 attenuation lengths 

around the LGB particles that are responsible for the majority of neutron captures.  The 

LGB inside the outer layer is only marginally useful.  The thickness of the shell will 

depend on the cross section of the isotopes being used.   

Smaller particle size with the same loading also results in a more homogeneous 

mixture of LGB.  There is a mean distance from any point in the scintillator to a shard of 

LGB.  The lower the mean distance, the more likely the neutron will not capture on H.  
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Additionally, the higher the probability of passing through LGB in any single scatter 

event the more likely the capture will occur on Li or B rather than Gd.  This is due to the 

lower cross section of Gd at higher energies. 

Gains in capture efficiency due to reduction in particle size are limited by two 

factors, which will not be evident in the simulation.  The first is the expected increase in 

scintillation light attenuation addressed above.  Although the effect of particle size on 

scintillation light attenuation has not been quantified, it is reasonable to expect that as the 

surface area of mismatched indices of refraction is increased, the scintillation light 

attenuation will increase in some proportionality.  The second factor is the range of the 

ion products from capture on Li or B.  If the particle size is reduced to dimensions on the 

order of the range of the ion products in LGB, then the electron equivalent energy of 

neutron capture will begin to fall.  This minimum size is much smaller than any of the 

prototype shards.  The longest ranged ion, the triton from capture on 6Li, has a range in 

LGB of approximately 45 um [23].   

B. MONTE CARLO SIMULATIONS 

The detectable ratio determined in the simulations is simply the number of Li and 

B captures versus total neutrons generated.  This does not account for scintillation light 

attenuation or inexact triggering methods.  It is an “ideal” that could be approached if 

every neutron capture were counted.  The simulated boron capture efficiency is 

significantly higher than can be measured using the current experimental apparatus.  The 

number of measured lithium captures may also fall off in a larger detector.   
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Figure 26.   GEANT4 visualization of 10 keV neutrons in Detector 1.  Neutron tracks 

are green.  Gamma tracks are red.  Electron tracks are too short to be seen at 
this scale.  100 neutrons events are shown. 

1. Simulation of Energy Variation for Several Isotope Configurations 

To get a sense of the characteristics of a 1 m3 LGB/plastic detector, the initial 

simulations used 10 keV and 100 keV neutrons, with varying isotope constituents.  LGB 

Loading was set at 1% and LGB particle size was 3 mm x 3 mm x 0.15 mm.  The unusual 

particle aspect ratio was required due to the large memory requirements of the simulation 

when the number of particles approaches 7x106.  Although the size is not achievable 

through normal cleavage of LGB crystal, the difference in simulated capture efficiency 

between a 1 mm x 1 mm x 0.15 mm and a 3 mm x 3 mm x 0.15 mm shard size is less 

than 5 percent.  Table 4 shows the capture efficiency by isotope for a LGB/plastic 

cylinder 1 m tall and 0.565 cm in diameter (1 m3 volume).  10 keV and 100 keV neutrons 

were generated randomly throughout the volume to simulate the neutron product of 

inverse beta decay.   

As shown in Table 4, the simulations of capture efficiency indicate very little 

difference between 10 and 100 keV neutron energy.  This is as expected since moderation 
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from 100 keV to 10 keV would only take an average of eight recoils in PVT, whereas 

moderation to epithermal energies (0.25 to 1 eV) takes on average approximately 60 

recoils. The scattering would be occurring at high enough energy that the cross section 

for capture would still be over 100 times lower than at epithermal energies.  The captures 

that occur during the initial recoils that take a neutron from 100 keV to 10 keV account 

for only a small percent of the total captures.   

Table 4 also shows the large increase in detectable neutron captures by using low 

cross section Gd.  If it was economically feasible to use low cross section Gd, it would be 

the obvious choice.  It would also then be reasonable to use 11B instead of 10B as well.  

Although a longer detector would ideally be able to detect all of the captures, it is 

realistic to assume that less than half of the Boron captures would be identifiable unless 

triggering can be greatly improved.  If, for cost reasons, natGd must be used, then deciding 

which boron isotope to use becomes difficult and requires a better understanding of the 

efficiency with which B captures can be identified.   

 

Table 4.   Variations of Energy and Isotope Parameters in a 1 m3 LGB/plastic detector 

Neutron 
Energy(keV) 

LGB 
isotopes 

LGB 
Size 

(mm) 
LGB 

loading
Li 

Cap(%)
B 

Cap(%)
Gd 

Cap(%)
H 

Cap(%)
Escape 

(%) 
Li/B 
ratio 

Li/Gd 
Ratio 

Detectable 
Ratio 

10 6LinatGd10B 3x3x0.15 1.00% 10.80 21.43 42.96 12.01 12.80 0.50 0.25 0.32 

10 6LidepGd10B 3x3x0.15 1.00% 23.41 49.35 - 14.57 12.67 0.47 - 0.73 

10 6LidepGd11B 3x3x0.15 1.00% 63.29 - - 21.50 15.21 - - 0.63 

10 6LinatGd11B 3x3x0.15 1.00% 15.00 - 59.88 12.52 12.60 - 0.25 0.15 

100 6LinatGd10B 3x3x0.15 1.00% 10.52 21.46 42.28 11.48 14.26 0.49 0.25 0.32 

100 6LidepGd10B 3x3x0.15 1.00% 23.62 48.11 - 13.81 14.46 0.49 - 0.72 

100 6LidepGd11B 3x3x0.15 1.00% 62.31 - - 21.45 16.24 - - 0.62 

100 6LinatGd11B 3x3x0.15 1.00% 13.59 - 56.62 12.59 17.20 - 0.24 0.14 

C. INCREASED LOADING WITH PARTICLES OF THE SAME 
DIMENSION 

The effect of increased loading beyond 1%, as shown in Table 5, provides only 

marginal increases in capture efficiency.  It appears that the reduction in scintillation light  
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attenuation due to a doubling of LGB would make loadings much above 1% 

counterproductive.  The leveling off in the capture efficiency as loading is increased is 

shown in Figure 27. 

 

Table 5.   Monte Carlo results for increased loading with same dimension particles. 

Neutron 
Energy(keV) 

LGB 
isotopes 

LGB Size 
(mm) 

LGB 
loading

Li 
Cap(%)

B 
Cap(%)

Gd 
Cap(%)

H 
Cap(%)

Escape 
(%) 

Li/B 
ratio 

Li/Gd 
Ratio 

Detectable 
Ratio 

10 6LinatGd10B 3x3x0.15 0.10% 3.72 7.39 18.46 49.91 20.52 0.50 0.20 0.11 
10 6LinatGd10B 3x3x0.15 0.50% 8.20 16.70 40.17 20.85 14.08 0.49 0.20 0.25 

10 6LinatGd10B 3x3x0.15 1.00% 10.80 21.43 42.96 12.01 12.80 0.50 0.25 0.32 

10 6LinatGd10B 3x3x0.15 1.50% 13.08 24.68 42.54 8.20 11.50 0.53 0.31 0.38 

10 6LinatGd10B 3x3x0.15 2.00% 13.94 27.86 41.63 6.19 10.38 0.50 0.33 0.42 
 

 
Figure 27.   Graph of simulated neutron capture efficiency of 10 keV neutrons versus 

LGB particle loading by %w for a 1 m3 detector  

 



 62

D. PARTICLE SIZE VARIATIONS 

1. Large Versus Small LGB Particle Size for Several Isotopes 

Table 6 shows the significant difference in neutron capture for two different LGB 

particle sizes.  It is interesting to note how dramatically the neutrons shift from capture on 

LGB to capture on H with a larger particle size.  It is not immediately clear from this 

simulation how much the shift is due to a significant volume of “inactive” LGB inside a 

shell of useful LGB and how much it is due to having a more uniform geometric 

distribution of LGB. 

 

Table 6.   Monte Carlo results for large and small LGB particle size for several isotope 
configurations 

Neutron 
Energy(keV) 

LGB 
isotopes 

LGB 
Size 

(mm) 
LGB 

loading
Li 

Cap(%)
B 

Cap(%)
Gd 

Cap(%)
H 

Cap(%)
Escape 

(%) 
Li/B 
ratio 

Li/Gd 
Ratio 

Detectable 
Ratio 

10 6LinatGd10B 3x3x0.15 1.00% 10.80 21.43 42.96 12.01 12.80 0.50 0.25 0.32 

10 6LinatGd10B 3x3x1 1.00% 6.65 13.57 29.77 32.64 17.37 0.49 0.22 0.20 

10 6LidepGd10B 3x3x0.15 1.00% 23.41 49.35 - 14.57 12.67 0.47 - 0.73 

10 6LidepGd10B 3x3x1 1.00% 16.59 32.75 - 33.42 17.24 0.51 - 0.49 

10 6LidepGd11B 3x3x0.15 1.00% 63.29 - - 21.50 15.21 - - 0.63 

10 6LidepGd11B 3x3x1 1.00% 45.12 - - 37.46 17.42 - - 0.45 

10 6LinatGd11B 3x3x0.15 1.00% 15.00 - 59.88 12.52 12.60 - 0.25 0.15 

10 6LinatGd11B 3x3x1 1.00% 9.56 - 38.54 34.71 17.19 - 0.25 0.10 
 

Table 7 further shows the effect of reducing particle size, but on a single isotope 

configuration and across all three dimensions of the particle.  There are certainly 

appreciable gains to capture efficiency due to reducing the particle size.  Yet, without 

knowing more fully the effect of changing particle size on the scintillation light 

attenuation it is difficult to predict optimal particle size. 
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Table 7.   Monte Carlo results for reduced particle volume in all three dimensions with 
same loading and number of LGB particles. 

Neutron 
Energy(keV) 

LGB 
isotopes 

LGB Size 
(mm) 

LGB 
loading

Li 
Cap(%)

B 
Cap(%)

Gd 
Cap(%)

H 
Cap(%)

Escape 
(%) 

Li/B 
ratio 

Li/Gd 
Ratio 

Detectable 
Ratio 

10 6LinatGd10B 2x2x2 1.00% 6.27 13.30 28.89 34.59 16.95 0.47 0.22 0.20 

10 6LinatGd10B 1x1x1 1.00% 8.47 17.10 36.64 23.03 14.76 0.50 0.23 0.26 

10 6LinatGd10B 0.75x0.75x0.75 1.00% 9.27 19.60 39.03 18.47 13.63 0.47 0.24 0.29 

10 6LinatGd10B 0.7x0.7x0.7 1.00% 9.73 19.96 39.71 17.86 12.74 0.49 0.25 0.30 

10 6LinatGd10B 0.65x0.65x0.65 1.00% 10.06 20.19 39.95 16.30 13.50 0.50 0.25 0.30 

10 6LinatGd10B 0.5x0.5x0.5 1.00% 10.59 21.11 41.85 13.96 12.49 0.50 0.25 0.32 
 

Table 8 also shows the effect of reduced particle size on capture efficiency, but by 

squeezing the particle in one dimension while keeping the total particle volume the same 

(to keep the number of particles constant).  This simulation is intended to determine 

whether the LGB is “inactive” inside an active shell.  There are certainly marginal gains 

from using particles with a thin aspect, but again if the attenuation of scintillation light is 

a LGB surface effect then the increasing surface area of flatter particles may not prove 

beneficial in total and is essentially not much different from using smaller particles. 

 

Table 8.   Monte Carlo results for squeezed aspect ratio at same loading and number of 
LGB particles. 

Neutron 
Energy(keV) 

LGB 
isotopes 

LGB Size 
(mm) 

LGB 
loading

Li 
Cap(%)

B 
Cap(%)

Gd 
Cap(%)

H 
Cap(%)

Escape 
(%) 

Li/B 
ratio 

Li/Gd 
Ratio 

Detectable 
Ratio 

10 6LinatGd10B 0.75x0.75x0.75 1.00% 9.27 19.60 39.03 18.47 13.63 0.47 0.24 0.29 

10 6LinatGd10B 1x1x0.4219 1.00% 9.34 19.56 39.87 17.61 13.62 0.48 0.23 0.29 

10 6LinatGd10B 1.5x1.5x0.1875 1.00% 10.60 21.35 43.45 12.40 12.20 0.50 0.24 0.32 

10 6LinatGd10B 2x2x0.105 1.00% 10.66 23.24 45.10 9.22 11.78 0.46 0.24 0.34 
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V.  CONCLUSION 

A. RESULTS 

An antineutrino detector suitable for above ground reactor power monitoring will 

require particle identification of at least a few tens of percent of the neutrons created 

through inverse beta decay.  The simulations of a 1 m3 antineutrino detector indicate that 

with smaller particles with a smallest dimension ∼ 0.1–0.2 mm of 6LinatGd10B the lithium 

gadolinium-borate(LGB)/plastic design appears capable of achieving that mark and is 

competitive with other designs under consideration for above ground nuclear reactor 

monitoring.  Simulations of variations of isotope configuration and particle size indicate 

that neutron identification of over 70% is potentially achievable.  There remains much to 

understand about the optical characteristics of the LGB/plastic design and whether it can 

be scaled to larger sizes without reducing the already marginal optical performance.  

Considering some of the obvious manufacturing imperfections, it seems likely that the 

optical performance could be improved by further development of the production 

process.  It is apparent, however, that 50 cm lengths could be used without improvements 

to the optical performance.   

In this thesis, two detectors were evaluated by experiment and associated 

simulation to determine the neutron-detection performance characteristics and 

rudimentary optical characteristics of a LGB/plastic antineutrino detector.  It was shown 

that for the first detector, Detector 1, a 127 mm diameter, 123 mm tall cylinder with 1% 

loading of ∼ 1 mm LGB shards, the scintillation light attenuation length ( SLα ) was 

17.8  5.5±  cm.  For Detector 2, which is a 127 mm diameter 348 mm tall cylinder of 

LGB/plastic scintillator with 1% loading of ∼ 2–3mm LGB shards, SL 18.2  2.6 cmα = ± .  

The resolution for Detector 1 was found to be ≈15% at 1 MeV in the middle of the 

detector.  Detector 2 exhibited a resolution of ≈20% at 1 MeV. 
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It was also shown that with pulses of sufficient amplitude the resolution of the 

combined two PMT signal for interactions throughout the detector is approximately that 

of the single PMT at the center of the detector.  Assuming the scintillation light 

characteristics of Detector 2 hold for longer detectors, this design would be able to 

perform as an antineutrino detector at a length of 82 cm.   

A particle identification (PID) method was demonstrated, which showed excellent 

separation of the Li capture signal. The neutron capture on B signature was clearly 

present, but the inefficient trigger mechanism and proximity to the double gamma 

background made determination of the Boron capture efficiency highly uncertain.  The 

neutron capture efficiency for both detectors was used to validate a GEANT4 model of 

the detector. 

Additional validation of the computer model was made through comparison of the 

interevent times.  The experiment clearly showed an unanticipated additional decay 

constant, but this was also replicated in the simulation.  With a primary long neutron 

lifetime component of 2,exp 29.7 4.0 sτ μ= ±  and a secondary fast component of 

3,exp 3.78 0.48 sτ μ= ±  for neutrons from a 252Cf source the expected shorter lifetime for 

lower energy neutrons from inverse beta decay is entirely suitable for use as an 

antineutrino detector. 

B. CONSIDERATIONS FOR A FULL SIZE LGB/PLASTIC 
ANTINEUTRINO DETECTOR 

An antineutrino detector based on the LGB/plastic scintillator would certainly be 

built as an array of detectors cells to achieve a volume ∼ 1 m3.  There are several 

potential benefits to an array of detectors as opposed to monolithic detector.  As the 

LGB/plastic mix shows moderate attenuation, an array of such detectors could give three 

dimensional positional information about the detections.  This information could allow 

discrimination between thermal neutrons and antineutrino events.  N. S. Bowden et al. 

have done work on segmented plastic scintillation detectors as a means of fast neutron 

spectroscopy.  Similar methods could be used to reject such signals as high-energy  
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neutron background in an antineutrino detector.  Increased numbers of elements in an 

array would increase cost and complexity of the design, but would also be a method of 

reducing the rate of double gamma background.   

C. CONTINUING WORK 

1. Waveform Digitization 

Initial work was begun on utilizing a waveform digitizer to record the scintillation 

pulses.  The waveform digitizer (WFD) should allow several very useful features.  By 

allowing integration over several gates without signal attenuation due to delay lines, the 

WFD data could be used to filter out false signals due to double-gamma pulses.  The 

WFD also allows for programmable triggering.  Therefore, the trigger could be tuned to 

the low maximum pulse amplitude seen in capture on 10B. 

2. Analysis of Optical Characteristics of LGB/Plastic 

This thesis includes some rudimentary analysis on the scintillation light 

attenuation.  However, the effect of LGB particle inclusions is not well understood.  

Further experiment on could reveal the source of the short scintillation attenuation length.  

An optical light transport computer model may indicate what effect the LGB particles 

should have based purely on index of refraction effects and absorption in the detector. 

3. 3He Replacement Detector 

3He is a stable isotope that is naturally rare on earth, but can be produced by 

collecting it as a product of 3H decay (13.6 yr half-life).  The method of production relies 

on tritium being produced through neutron bombardment of Li, B, or N.  Tritium was 

produced in large quantities in the past to support nuclear weapons production, but with 

the end of the Cold War and reduction in nuclear weapon stockpiles, the tritium stockpile 

has also been diminished.   

3He is used in fields, such as medical imaging and cryogenics, but the majority of 

the worlds 3He stocks are used in neutron detection [24]. 
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3He is an important isotope in both fast and thermal neutron detection.  It has a 

high thermal capture cross section, 5330 barns, which is useful for thermal neutron 

detection.  It can also transfer a continuum of energy up to 75% of a fast neutron’s kinetic 

energy in an elastic scattering event, creating an edge (much like the Compton edge for 

gamma rays), which is useful in fast neutron spectroscopy.  

The Department of Homeland Security had desired to use 3He based detectors in 

U.S. ports of entry in order to detect nuclear materials entering the country [25].  The 

shortage has forced DHS to find alternative detectors that are a suitable replacement for 
3He based detectors.  An LGB based detector has been proposed to fulfill this role.   

As simply a neutron detector, the LGB particles would be mixed into a non-

scintillating acrylic instead of the plastic scintillator material.  This would essentially 

eliminate the gamma background and simplify the detection of neutrons.  
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APPENDIX.  SIMULATION PARAMETERS 

All detector simulation work was done in GEANT4 with patch 2 to version 9.2.  

In this GEANT4 version, the low energy (less than 20 MeV) neutron interaction models 

are based on interpolation from ENDF/BVI cross section libraries.  There were three 

distinct cases where Monte Carlo simulations were implemented: gamma ray response 

simulations, 252Cf source neutron capture simulations and inverse beta decay neutron 

capture efficiency simulations. 

A. GAMMA RAY RESPONSE SIMULATIONS 

In order to simulate a 22Na source, the primary particles generated in GEANT4 

were randomly assigned a double length floating point number between 0 and 1.  If the 

number was greater than 0.357, the primary gamma ray was assigned an energy of 0.511 

MeV.  If the number was less than or equal to 0.357, then the primary gamma ray was 

assigned an energy of 1.275 MeV.  This correctly proportions the gamma rays emitted 

from 22Na decay. 

Assumptions in gamma ray detector response: 

• The low probability of both a 0.511 MeV and a 1.275 MeV gamma ray 
both being emitted into the detector simultaneously  

• If a gamma ray scatters out of the detector it will not re-enter 

• No gamma rays scatter from the environment into the detector other than 
those from the collimator 

B. NEUTRON SIMULATIONS 

In all simulations, the LGB particles are placed inside the volume by randomly 

generating coordinates that lie within the detector.  In most simulations, box shaped LGB 

particles were used.  They were oriented randomly by selecting a random axis of rotation 

and random rotation angle.  The DRAND48 random number engine was used for all 

randomization.  The GEANT4 simulation for the large detector is memory intensive and 

the segmentation procedure used by GEANT4 begins to fail with more than 7x106 e6 

particles.  In order to simulate smaller particles, only one dimension of the LGB particles 
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was decreased.  The aspect ratio for crystals with a small dimension of 0.15 mm is certain 

to be greater than the 3 mm x 3 mm x 0.15 mm used in many of the simulations.  Tests of 

smaller dimensions, such as 1 mm x 1 mm x 0.15 mm resulted in capture efficiency 

increases of at most 3 percent.  The larger size was used to allow for simulating the effect 

of increased loading without going over memory limitations.   

The following simplifications were made to the neutron simulation: 

• If a neutron scatters out of the detector it does not return; 

• No neutrons are reflected from the surroundings into the detector 

• For 252Cf source neutrons, the source is a point source 

• For inverse beta decay neutrons, the neutrons are generated 
homogeneously throughout the volume of the detector without respect to 
whether it starts inside LGB or plastic 

• Isotope specific elements are 100% pure.  Actual values are 99% or better. 

• Random placement does not account for particles that are placed in 
location overlapping another LGB particle.  The effect was checked 
through GEANT4 boundary checking and found to affect less than 1% of 
the placed volumes. 
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